Pada tingkat makroskopis, yaitu tingkatan yang dapat kita amati langsung dengan indera kita, padatan mempunyai bentuk tertentu dan menempati ruang tertentu pula. Pada tingkat mikroskopis (ketika bendanya sangat kecil sehingga tidak dapat diamati secara langsung), partikel penyusun padatan sangat berdekatan satu sama lainnya, merapat membentuk struktur dengan tatanan pola tertentu (struktur Kristal), dan tidak dapat bergerak dengan mudah.
Tidak seperti padatan, cairan tidak memiliki bentuk tertentu tetapi memiliki volume tertentu seperti pada padatan. Bentuk cairan mengikuti wadah dimana cairan tersebut berada. Partikel-partikel pada cairan terpisah lebih jauh dibandingkan padatan, dan partikel tersebut lebih mudah bergerak. Kekuatan tarik-menarik antar partikel cairan lebih lemah dibandingkan padatan.
Gas tidak memiliki bentuk dan volume tertentu. Pada gas, partikel-partikel terpisah lebih jauh daripada ketika berupa padatan atau cairan. Gerakan partikel pada gas tidak saling tergantung. Karena jarak antar partikel yang jauh dan masing-masing partikel dapat bergerak bebas, gas mengambang memenuhi seluruh ruang yang ditempatinya.
Energi adalah kemampuan untuk melakukan kerja. Energi dapat berbentuk macam-macam, seperti energi panas, energi cahaya, energi listrik, dan energi mekanik. Ada dua penggolongan energi yang umum dan penting bagi kimiawan, yaitu:
1. Energi Kinetik
Energi kinetik adalah energi gerak. Para kimiawan mempelajari partikel yang bergerak, khususnya gas, karena energi kinetik dari partikel ini membantu untuk menentukan apakah suatu reaksi dapat terjadi, selain faktor ada tidaknya tumbukan antar partikel dan perpindahan energi.
2. Energi Potensial
Energi potensial adalah energi yang tersimpan. Setiap benda mempunyai energi potensial yang tersimpan berdasarkan posisinya. Para kimiawan lebih tertarik dengan energi potensial yang tersimpan dalam ikatan kimia, yaitu gaya yang menyatukan atom-atom di dalam senyawa. Energi potensial tersebut akan dibebaskan menjadi bentuk energi lainnya saat reaksi kimia. Energi potensial yang ada pada ikatan kimia berhubungan dengan jenis ikatan dan jumlah ikatan yang memiliki kemampuan untuk putus dan membentuk ikatan baru.
Semua reaksi kimia mengikuti dua hukum dasar, yaitu hukum kekekalan massa dan hukum kekekalan energi. Hukum kekekalan massa menyatakan bahwa massa zat sebelum bereaksi harus sama dengan massa zat setelah bereaksi. Sementara hukum kekekalan energi (Hukum Termodinamika I) menyatakan bahwa energi tidak dapat diciptakan maupun dimusnahkan; energi hanya dapat diubah dari satu bentuk ke bentuk lainnya. Dengan kata lain, total energi di alam semesta selalu konstan.
Semua reaksi kimia dapat menyerap maupun melepaskan energi dalam bentuk panas (kalor). Kalor adalah perpindahan energi termal antara dua materi yang memiliki perbedaan temperatur. Kalor selalu mengalir dari benda panas menuju benda dingin. Termokimia adalah kajian tentang perpindahan kalor yang terjadi dalam reaksi kimia (kalor yang menyertai suatu reaksi kimia).
Aliran kalor yang terjadi dalam reaksi kimia dapat dijelaskan melalui konsep sistem-lingkungan. Sistem adalah bagian spesifik (khusus) yang sedang dipelajari oleh kimiawan. Reaksi kimia yang sedang diujicobakan (reagen-reagen yang sedang dicampurkan) dalam tabung reaksi merupakan sistem. Sementara, lingkungan adalah area di luar sistem, area yang mengelilingi sistem. Dalam hal ini, tabung reaksi, tempat berlangsungnya reaksi kimia, merupakan lingkungan.
Ada tiga jenis sistem. Sistem terbuka, mengizinkan perpindahan massa dan energi dalam bentuk kalor dengan lingkungannya. Sistem tertutup, hanya mengizinkan perpindahan kalor dengan lingkungannya, tetapi tidak untuk massa. Sedangkan sistem terisolasi tidak mengizinkan perpindahan massa maupun kalor dengan lingkungannya.
Pembakaran gas hidrogen dengan gas oksigen adalah salah satu contoh reaksi kimia dapat menghasilkan kalor dalam jumlah besar. Reaksi yang terjadi adalah sebagai berikut:
2 H2(g) + O2(g) –> 2 H2O(l) + energi
Dalam reaksi ini, baik produk maupun reaktan merupakan sistem, sedangkan sekeliling reaksi kimia merupakan lingkungan. Oleh karena energi tidak dapat diciptakan maupun dimusnahkan, hilangnya sejumlah energi pada sistem akan ditampung pada lingkungan. Dengan demikian, kalor yang dihasilkan dari reaksi pembakaran ini sesungguhnya merupakan hasil perpindahan kalor dari sistem menuju lingkungan. Ini adalah contoh reaksi eksoterm, yaitu reaksi yang melepaskan kalor, reaksi yang memindahkan kalor ke lingkungan.
Penguraian (dekomposisi) senyawa raksa (II) oksida hanya dapat terjadi pada temperatur tinggi. Reaksi yang terjadi adalah sebagai berikut:
energi + 2 HgO(s) –> 2 Hg(l) + O2(g)
Reaksi ini adalah salah satu contoh dari reaksi endoterm, yaitu reaksi yang menyerap (membutuhkan) kalor, reaksi yang memindahkan kalor dari lingkungan ke sistem.
Reaksi eksoterm merupakan reaksi yang memancarkan (melepaskan) kalor saat reaktan berubah menjadi produk. Reaktan memiliki tingkat energi yang lebih tinggi dibandingkan produk, sehingga energi dibebaskan pada perubahan reaktan menjadi produk. Sebaliknya, pada reaksi endoterm terjadi hal yang berlawanan. Pada reaksi endoterm, terjadi penyerapan kalor pada perubahan dari reaktan menjadi produk. Dengan demikian, reaktan memiliki tingkat energi yang lebih rendah dibandingkan produk.
Termokimia merupakan salah satu kajian khusus dari Termodinamika, yaitu kajian mendalam mengenai hubungan antara kalor dengan bentuk energi lainnya. Dalam termodinamika, kita mempelajari keadaan sistem, yaitu sifat makroskopis yang dimiliki materi, seperti energi, temperatur, tekanan, dan volume. Keempat sifat tersebut merupakan fungsi keadaan, yaitu sifat materi yang hanya bergantung pada keadaan sistem, tidak memperhitungkan bagaimana cara mencapai keadaan tersebut. Artinya, pada saat keadaan sistem mengalami perubahan, besarnya perubahan hanya bergantung pada kondisi awal dan akhir sistem, tidak bergantung pada cara mencapai keadaan tersebut.
Hukum Termodinamika I disusun berdasarkan konsep hukum kekekalan energi yang menyatakan bahwa energi tidak dapat diciptakan maupun dimusnahkan; energi hanya dapat diubah dari satu bentuk ke bentuk lainnya. Dalam kajian Hukum Termodinamika I, kita akan mempelajari hubungan antara kalor, usaha (kerja), dan perubahan energi dalam (ΔU).
Perubahan energi dalam (ΔU) dapat dinyatakan dalam persamaan ΔU = Uf – Ui, dimana Uf adalah energi dalam setelah mengalami suatu proses dan Ui adalah energi dalam sebelum mengalami suatu proses. Perubahan energi dalam (ΔU) merupakan fungsi keadaan. Energi dalam (U) akan bertambah jika sistem menerima kalor dari lingkungan dan menerima usaha (kerja) dari lingkungan. Sebaliknya, energi dalam (U) akan berkurang jika sistem melepaskan kalor ke lingkungan dan melakukan kerja (usaha) terhadap lingkungan. Dengan demikian, hubungan antara kalor, usaha (kerja), dan perubahan energi dalam (ΔU) dapat dinyatakan dalam persamaan sederhana berikut:
ΔU = Q + W
Proses | Tanda |
Melepaskan kalor (Q) dari sistem ke lingkungan (eksoterm) | - |
Menerima kalor (Q) dari lingkungan ke sistem (endoterm) | + |
Kerja (W) dilakukan oleh sistem terhadap lingkungan (melakukan kerja) | - |
Kerja (W) dilakukan oleh lingkungan terhadap sistem (menerima kerja) | + |
ΔU = Q + W
ΔU = Qp – P.ΔV
Sehingga, Qp = ΔU + P.ΔV atau ΔH = ΔU + P.ΔV
Qp disebut dengan istilah perubahan entalpi (ΔH), yaitu perubahan kalor yang dialami suatu zat pada tekanan tetap. Perubahan entalpi (ΔH) adalah penjumlahan energi dalam dan kerja. Oleh karena U, P, dan V merupakan fungsi keadaan, maka H juga merupakan fungsi keadaan. Dengan demikian, perubahan entalpi (ΔH) adalah fungsi yang hanya bergantung pada keadaan awal dan akhir zat, tidak bergantung pada cara mencapai keadaan tersebut.
Berdasarkan jenis reaksi yang terjadi, perubahan entalpi (ΔH) reaksi dapat dikelompokkan menjadi empat jenis, antara lain:
1. Perubahan entalpi pembentukan standar (ΔH°f)
Merupakan kalor yang terlibat dalam proses pembentukan satu mol senyawa melalui unsur-unsurnya. Sebagai contoh, reaksi ½ H2(g) + ½ I2(s) HI(g) merupakan reaksi pembentukan 1 mol senyawa HI. Kalor yang terlibat dalam reaksi ini disebut ΔH°f HI.
2. Perubahan entalpi penguraian standar (ΔH°d)
Merupakan kalor yang terlibat dalam proses penguraian satu mol senyawa menjadi unsur-unsur pembentuknya. Sebagai contoh, reaksi HI(g) ½ H2(g) + ½ I2(s) merupakan reaksi penguraian 1 mol senyawa HI. Kalor yang terlibat dalam reaksi ini disebut ΔH°d HI. Reaksi penguraian merupakan kebalikan dari reaksi pembentukan. Dengan demikian, tanda ΔH°d berkebalikan dengan tanda ΔH°f.
3. Perubahan entalpi pembakaran standar (ΔH°c)
Merupakan kalor yang terlibat dalam proses pembakaran satu mol unsur atau satu mol senyawa dengan oksigen. Sebagai contoh, reaksi C(s) + O2(g) CO2(g) merupakan reaksi pembakaran 1 mol unsur C. Kalor yang terlibat dalam reaksi ini disebut ΔH°c C. Contoh lain, reaksi pembakaran belerang dioksida, SO2(g) + ½ O2(g) SO3(g). Kalor yang terlibat dalam reaksi ini disebut ΔH°c SO2.
4. Perubahan entalpi netralisasi standar (ΔH°n)
Merupakan kalor yang terlibat dalam proses reaksi satu mol senyawa asam (H+) dengan satu mol senyawa basa (OH-). Sebagai contoh, reaksi HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l) merupakan reaksi netralisasi satu mol asam terhadap satu mol basa. Kalor yang terlibat dalam reaksi ini disebut ΔH°n.
Reaksi kimia umumnya berlangsung pada tekanan tetap. Perpindahan kalor yang terjadi saat reaktan berubah menjadi produk disebut perubahan entalpi reaksi (ΔH) dan dapat dituliskan dalam persamaan berikut:
ΔH = Hproduk - Hreaktan
Entalpi reaksi (ΔH) dapat bertanda positif maupun negatif, tergantung proses yang terjadi. Pada reaksi endoterm, kalor berpindah dari lingkungan ke sistem, menyebabkan entalpi produk lebih tinggi dibandingkan entalpi reaktan, sehingga ΔH bertanda positif (ΔH>0). Sebaliknya, pada reaksi eksoterm, kalor berpindah dari sistem ke lingkungan, menyebabkan entalpi produk lebih rendah dibandingkan entalpi reaktan, sehingga ΔH bertanda negatif (ΔH<0).Persamaan Termokimia merupakan persamaan reaksi kimia yang dilengkapi dengan nilai entalpi reaksinya. Melalui persamaan termokimia, selain mengetahui perubahan yang terjadi dari reaktan menjadi produk, kita juga sekaligus dapat mengetahui apakah proses ini membutuhkan kalor (endoterm) atau melepaskan panas (eksoterm). Berikut ini diberikan beberapa persamaan termokimia:
CH4(g) + 2 O2(g) –> CO2(g) + 2 H2O(l) ΔH = -890,4 kJ/mol
SO2(g) + ½ O2(g) –> SO3(g) ΔH = -99,1 kJ/mol
Entalpi merupakan salah satu sifat ekstensif materi. Sifat ekstensif materi bergantung pada kuantitas (jumlah) materi tersebut. Oleh karena itu, bila suatu persamaan termokimia dikalikan dengan faktor n, maka nilai ΔH juga ikut dikalikan dengan faktor n. Sebagai contoh:
H2O(s) –> H2O(l) ΔH = +6,01 kJ/mol
(untuk melelehkan satu mol es diperlukan kalor sebesar 6,01 kJ)
2 H2O(s) –> 2 H2O(l) ΔH = 2(+6,01 kJ/mol) = +12,02 kJ/mol
(untuk melelehkan dua mol es diperlukan kalor sebesar dua kali kalor pelelehan satu mol es)
Ketika suatu persamaan reaksi dibalik, posisi reaktan dan produk akan saling tertukar satu sama lainnya. Dengan demikian, nilai ΔH akan tetap dipertahankan, akan tetapi tandanya berubah [dari (+) menjadi (–) atau sebaliknya dari (– )menjadi( +)]. Sebagai contoh:
H2O(s) –> H2O(l) ΔH = +6,01 kJ/mol
H2O(l) –> H2O(s) ΔH = -6,01 kJ/mol
Dalam laboratorium, perubahan kalor yang terjadi akibat proses fisika maupun kimia dapat diukur dengan kalorimeter. Prinsip perhitungan entalpi reaksi melalui metode kalorimeter memanfaatkan Azas Black, yaitu kalor reaksi sebanding dengan massa zat yang bereaksi, kalor jenis zat yang bereaksi, dan perubahan temperatur yang diakibatkan oleh reaksi tersebut. Secara matematis, Azas Black dapat dinyatakan dalam persamaan berikut:
Q = m . c . ΔT
Q = kalor reaksi (J)m =massa zat yang bereaksi (g)
c = kalor jenis zat (J/g.°C)
ΔT = perubahan temperatur (°C)
Jumlah mol zat yang bereaksi dapat dihitung dengan salah satu dari persamaan berikut:
n = massa zat yang bereaksi / massa molar (Mr) zat tersebut
atau
n = Molaritas . Volume (khusus untuk larutan)
ΔH = Q / n
Selain menggunakan metode kalorimeter, entalpi reaksi dapat pula ditentukan melalui beberapa metode lainnya. Salah satu metode yang sering digunakan para kimiawan untuk mempelajari entalpi suatu reaksi kimia adalah melalui kombinasi data-data ΔH°f. Keadaan standar (subskrip °) menunjukkan bahwa pengukuran entalpi dilakukan pada keadaan standar, yaitu pada tekanan 1 atm dan suhu 25°C. Sesuai kesepakatan, ΔH°f unsur bebas bernilai 0, sedangkan ΔH°f senyawa tidak sama dengan nol (ΔH°f unsur maupun senyawa dapat dilihat pada Tabel Termokimia). Kita dapat menghitung entalpi suatu reaksi kimia apabila ΔH°f unsur maupun senyawa yang terlibat dalam reaksi tersebut diberikan. Sebagai contoh, berikut ini diberikan suatu reaksi hipotetis:a A + b B —————> c C + d D
Jika diberikan data:ΔH°f A = p kJ/mol
ΔH°f B = q kJ/mol
ΔH°f C = r kJ/mol
ΔH°f D = s kJ/mol
a, b, c, dan d adalah koefisien reaksi untuk masing-masing zat A, B, C, dan D. Maka ΔH reaksi dapat dihitung dengan persamaan berikut:
ΔHreaksi = [c(ΔH°f C )+ d(ΔH°f D)] – [a(ΔH°f A) + b(ΔH°f B)]
ΔHreaksi = [c.r + d.s] – [a.p + b.q]
Dengan demikian, entalpi suatu reaksi adalah penjumlahan entalpi produk yand dikurangi dengan penjumlahan entalpi reaktan. Singkat kata,ΔHreaksi = ΣΔH°f produk – ΣΔH°f reaktan
(jangan lupa masing-masing dikalikan terlebih dahulu dengan koefisien reaksinya)
Hukum Hess menyatakan bahwa entalpi reaksi tidak bergantung pada jalannya reaksi, tetapi hanya bergantung pada kondisi awal (reaktan) dan kondisi akhir (produk)reaksi. Ini merupakan konsekuensi dari sifat fungsi keadaan yang dimilki oleh entalpi. Hal ini berarti, nilai ΔH akan sama, baik reaksi berlangsung dalam satu tahap maupun beberapa tahap.
Sebagai contoh, kita ingin menentukan entalpi pembentukan gas karbon monoksida (CO). Reaksi yang terjadi adalah sebagai berikut:
C(grafit) + ½ o2(g) –> CO(g)
Kita tidak dapat menentukan ΔH°f CO secara langsung, sebab pembakaran grafit akan menghasilkan sejumlah gas CO2. Oleh sebab itu, kita dapat menggunakan cara tidak langsung dengan Hukum Hess. Diberikan dua persamaan reaksi termokimia yang berkaitan dengan gas CO, masing-masing adalah sebagai berikut:
(1) C(grafit) + O2(g) –> CO2(g) ΔH = -393,5 kJ/mol
(2) CO(g) + ½ o2(g) –> CO2(g) ΔH = -283,0 kJ/mol
Untuk mendapatkan reaksi pembentukan CO, reaksi (1) dipertahankan (tetap), sementara reaksi (2) dibalik (jangan lupa mengubah tanda pada ΔH). Selanjutnya jumlahkan kedua reaksi tersebut.
(1) C(grafit) + O2(g) –> CO2(g) ΔH = -393,5 kJ/mol
(2) CO2(g) –> CO(g) + ½ o2(g) ΔH = +283,0 kJ/mol +
C(grafit) + ½ o2(g) –> CO(g) ΔH = -110,5 kJ/mol
Dengan menjumlahkan kedua reaksi tersebut, kita telah memperoleh reaksi pembentukan CO dengan ΔH reaksi sebesar -110,5 kJ/mol. Spesi CO2 di ruas kiri dan kanan saling meniadakan. Dengan demikian, reaksi-reaksi yang akan dijumlahkan harus disusun sedemikian rupa, sehingga spesi yang tidak diharapkan dapat dihilangkan dan hanya tersisa reaktan dan produk yang diinginkan dalam reaksi kimia.
Kestabilan suatu molekul ditentukan oleh besarnya energi (entalpi) ikatan, yaitu perubahan entalpi yang terjadi saat pemutusan satu mol molekul dalam wujud gas. Semakin besar energi ikatan, semakin stabil ikatan bersangkutan. Besarnya entalpi ikatan dapat dilihat pada Tabel Termokimia.
Reaksi kimia pada dasarnya merupakan peristiwa pemutusan-penggabungan ikatan. Saat reaksi kimia berlangsung, reaktan akan mengalami pemutusan ikatan, menghasilkan atom-atom yang akan bergabung kembali membentuk produk dengan sejumlah ikatan baru. Dengan mengetahui nilai entalpi masing-masing ikatan, kita dapat menghitung entalpi suatu reaksi kimia. Oleh karena pemutusan ikatan kimia selalu membutuhkan sejumlah kalor dan sebaliknya pembentukan ikatan kimia baru selalu disertai dengan pelepasan kalor, maka selisihnya dapat berupa pelepasan (eksoterm) maupun penyerapan (endoterm) kalor.
Jika kalor yang dibutuhkan untuk memutuskan ikatan lebih tinggi dibandingkan kalor yang dilepaskan pada saat pembentukan ikatan, maka reaksi tersebut membutuhkan kalor (endoterm)
Jika kalor yang dibutuhkan untuk memutuskan ikatan lebih rendah dibandingkan kalor yang dilepaskan pada saat pembentukan ikatan, maka reaksi tersebut melepaskan kalor (eksoterm)
Persamaan yang dapat digunakan untuk menghitung entalpi reaksi dari data energi ikatan adalah sebagai berikut:
ΔH = Σenergi ikatan reaktan – Σenergi ikatan produk
ΔH = Σenergi yang dibutuhkan – Σenergi yang dilepaskan
Sebagai contoh, diberikan data energi ikatan sebagai berikut:H-H = 436,4 kJ/mol
O=O = 498,7 kJ/mol
O-H = 460 kJ/mol
Dengan menggunakan data-data tersebut, maka entalpi reaksi 2 H2(g) + O2(g) –> 2 H2O(g) dapat dihitung dengan cara sebagai berikut:
ΔH = Σenergi ikatan reaktan – Σenergi ikatan produk
ΔH = [2.energi ikatan H-H + 1.energi ikatan O=O] – [4.energi ikatan O-H]
ΔH = [2(436,4) + 1(498,7)] – [4(460)]
ΔH = 1371,5 – 1840 = -468,5 kJ/mol
Referensi:
Chang, Raymond. 2007. Chemistry Ninth Edition. New York: Mc Graw Hill.
Moore, John T. 2003. Kimia For Dummies. Indonesia: Pakar Raya.
0 comments:
Post a Comment